

Profometer 6 보강 철근 평가 및 부식 분석을 위한 일체형 솔루션

Profometer 6 보강 철근 탐지

목차 – 보강 철근 탐지

- 1. 와전류 기술
 - 측정 원리
 - 방법의 한계
- 2. 측정 절차
 - 로케이트 모드
 - 싱글-라인 모드
 - 멀티-라인 모드
 - 크로스-라인 모드
 - 에리어-스캔 모드
- 3. 인공 지능 및 커버 두께 교정
- 4. 사례
 - 크로스 라인 모드를 통한 보강 철근 감지
 - 보강 철근 중첩

BS 1881 Part 204 콘크리트 커버의 정의

- 와전류 측정기는 콘크리트 커버 두께에 대한 가장 정확한 측정을 제공합니다.
- 커버는 콘크리트의 면과 보강재의 표면 사이의 가장 짧은 거리입니다 (c1).
- 또한 보강 철근 위치 파악에 사용되며 적절한 조건에서 보강 철근 지름을 합리적으로 추정 할 수 있습니다.

와전류 기술

• 검색 헤드는 단일 또는 다중 코일 시스템으로 구성 될 수 있습니다.

3개의 서로 다른 배치로 여자(勵磁) 될 수 있습니다.

측정 범위

Standard 범위에서 두 코일은 반대 방향으로 반복되는 전류를 통해 여자(勵磁)됩니다.

(작은 필드가 생성됨).

Large 범위에서는 두 개의 코일이 병렬 방향으로 반복되는 전류를 통해 여자(勵磁) 됩니다 (더 큰 필드 생성).

Spot 범위에서는 하나의 코일 만 여자(勵磁) 됩니다 (더 작은 제한 필드가 생성됨).

펄스 와전류 물리적 원리 직경 추정

- 주어진 보강 철근 직경에 대해 신호 강도는 거리 (커버)와 반비례 관계가 있으므로 계산할 수 있습니다.
- 이 교정은 Standard 범위와 Large 범위 모두에 대해 장비에서 수행되고 기록됩니다.
- 직경 추정은 Standard 범위와
 Large 범위의 같은 지점에서
 측정하여 이루어집니다. 그런 다음
 교정 곡선을 비교하여 두 곡선
 모두에서 동일한 커버 값 결과를
 제공하는 보강 철근 직경을
 찾습니다.

유도 방식 측정 원리

신호 강도에 영향을 미치는 요인

- 보강 철근의 거리 (커버).
- 보강 철근의 사이즈 (직경).
- 보강 철근의 방향 (보강 철근이 프로브와 평행한 경우 높은 신호).
- 다른 보강 철근과의 평행 또는 횡 방향의 근접성.
- 측정 필드에 배치되는 기타 모든 금속 요소.

유도 방식 한계성

측정 영역 내의 모든 전도성 물체는 신호 강도에 영향을 미칩니다.

NOTE:

- 평행한 보강 철근의 영향은 Profometer 6 및 Profoscope에 내장된 알고리즘 "Neighboring Bar Correction"을 사용하여 수정할 수 있습니다.;
- 평행 및 횡 방향 보강 철근의 영향은 Profometer 6에 탑재된 알고리즘 "Artificial Intelligence"로 보정 할 수 있습니다. (설정 참조);

유도 방식 한계성

NOTE:

- 직경 측정은 Standard 범위의 80 % 이내에서만 가능합니다.
- 얕은 부분의 보강 철근은 더 깊은 표적을 숨길 가능성이 있습니다; 큰 직경과 작은 철근 간격은 이 "그림자 효과" 에 직접적인 원인이 됩니다.

유도방식 한계성

- 싱글-라인, 멀티-라인, 크로스-라인, 에리어-스캔 등과 같이 추가로 사용 가능한 고급 획득 방법을 진행하기 전에 항상 수행되어야 하는 최초 예비 조사입니다.
- Profometer와 Profoscope의 모든 버전에서 사용할 수 있는 고전적인 측정법입니다.; 다양한 종류의 음향 및 시각 기능을 다양한 모델에서 사용할 수 있으므로 사용자가 측정 된 신호 강도의 로컬 최대 값을 찾을 수 있습니다.이 값은 보강 철근 축을 따라 배치 된 프로브로 도달합니다.
- 조사는 시험체의 표면에서 실제 보강 철근 격자를 매핑하고 원하는 커버 및 직경 판독 값을 저장하는 결과를 가져와야 합니다.
- 외부 해상도에 한계 (좁은 간격 / 높은 커버 두께)가 있으면 개별적으로 밀접하게 간격을 둔 보강 철근의 축을 찾기가 어렵거나 불가능 해집니다.
- 절차에서 실제 변위가 측정되지 않으므로 장비에 그래픽 정보가 저장되지 않습니다.

로케이트 모드 Profometer 6

 보강 철근에 접근하는 프로브

 보강 철근 중심에 위치한 프로브

 기울어진 보강 철근이 표시됨

- Actual Cover Distance to next rebar Nos./Meas. diameter Signal strength
- Both rectangles Green: Ideal probe position: Both coils maximum signal strength

Bad probe position: Coil rectangles of different size and red

로케이트 모드 일반적인 중요 규칙

다중 층 보강 철근에 대한 커버 두께 또는 직경 측정을 수행 할 때 프로브의 중심이 스캔 방향과 평행한 철근의 중간 지점에 놓이는 것이 매우 중요합니다.; 이것이 판독 값을 저장하기 전에 표면에 보강 격자를 그려야 하는 이유입니다.

NOTE:

싱글-라인, 멀티-라인, 크로스-라인, 에리어-스캔 등과 같은 고급 모드로 작업 할 때도 동일한 규칙이 적용됩니다.

싱글-라인 일반 개념

싱글-라인 모드에서 프로브가 선형 경로를 따라 움직이는 동안 해당 프로브 변위와 함께 신호 강도 판독값이 지속적으로 저장됩니다.

이것이 Profometer 630/650 시스템의 진정한 "핵심"인데, 멀티-라인 및 크로스-라인 고급 모드는 여러 싱글-라인 스캔의 보간법(interpolation)에 의존하므로, 이 방법의 실제 "원시 필드 데이터"로 간주 될 수 있기 때문입니다.

다중 레이어 배열로 작업 할 때 스캔이 최적의 위치에서 수행되어야 합니다.(스캔 방향과 평행한 보강 철근 중점).

싱글-라인 측정 모드

NOTE: 보강 철근은 커버 범위의 90 % 내에서 모든 로컬 피크에 자동으로 지정됩니다.

보강 철근을 원으로 표시하려면 가로 축과 세로 축을 같은 축척으로 확대/축소합니다.

시작 선에서 첫 번째 보강 철근까지의 거리와 끝 선에서 마지막 보강 철근까지의 거리가 흰색으로 표시됩니다. 그렇지 않은 경우 확대하십시오.

싱글-라인 편집 기능

보강 철근의 지름 탭을 변경하려면 : 창이 열립니다.

창을 탭하고 지름을 변경하십시오. 설정된 지름을 0으로 지웁니다.

새로운 지름이 설정되고 주황색으로 표시됩니다.

그에 따라 커버가 변경되지만 커버 곡선은 보강 철근 축 위에 있는 것을 제외하고는 그대로

멀티-라인 & 크로스-라인 일반 개념

멀티-라인과 크로스-라인 모드에서, 조사된 전체 표면의 신호 강도에 대한 완전한 2-D 단층 촬영 또는 보강 철근 위치, 커버, 직경의 2 차원 표현을 제공하기 위해 각각 평행 및 평행 + 횡단 싱글-라인 스캔을 여러 개 결합합니다.

멀티-라인 측정 모드

카트 속도는 초록색 수준을 초과해서는 안됩니다 (특히 신호 강도 표현에 중요). 저장 후 최소한 하나의 직경이 측정된 경우 데이터는 멀티-라인, 싱글-라인, 통계 뷰 및 스냅 샷 뷰에서 볼 수 있습니다. 크로스-라인 측정 모드

카트 속도는 초록색 수준을 초과해서는 안됩니다 (특히 신호 강도 표현에 중요). 저장 후 최소한 하나의 직경이 측정된 경우 데이터는 멀티-라인, 싱글-라인, 통계 뷰 및 스냅 샷 뷰에서 볼 수 있습니다.

에리어 스캔 모드는 주로 첫 번째 레이어 보강 철근의 커버만 표시해야 하는 경우에 사용됩니다.

측정 절차는 멀티-라인 모드와 동일하지만, 측정하는 동안 보강 철근은 표시되지 않고, 격자의 모든 셀은 셀 내에서 측정된 가장 낮은 커버 값에 따라 색상이 지정됩니다.

에리어-스캔 모드는 주어진 영역에 대한 부식 관련 파라미터의 시각적 정보를 얻기 위한 하프-셀 포텐셜 필드 측정 (예를 들어, Profometer 부식 측정과 결합)과의 조합에 가장 적합합니다.

에리어-스캔 측정 모드

저장 후 최소한 하나의 직경이 측정된 경우 데이터는 멀티-라인, 싱글-라인, 통계 뷰 및 스냅 샷 뷰에서 볼 수 있습니다.

과밀한 배치에 대한 커버 두께의 정확성 인공 지능 및 커버 교정

인공 지능 (Al) 기능 소개

생물학적 영감을 얻은 접근법

Profometer 인공 지능 자동 학습 알고리즘은 1,600가지 이상의 다른 구성을 가진 데이터베이스를 사용합니다. :

• 입력:

- 1. 직경 Layer 1
- 2. 간격 Layer 1
- 3. 직경 Layer 2
- 4. 간격 Layer 2
- 5. 측정값 (스탠다드 범위)
- 출력: 커버 Layer 1

인공 지능 (AI) 기능 2mm 정확도 내에서 판독값의 90 %

Profometer AI 모델은 첫 번째 레이어 커버 측정이 2mm 정확도 이내인 경우 90 % 이상의 확률로 표준 직교 2 레이어 보강 철근 구성에 대해 가장 정확한 커버 판독 값을 산출합니다.

인공 지능 (AI) 기능 정확도 비교

proceq

·-- 산업 벤치 마크 ── Profometer 6 AI

인공 지능 (AI) 기능 설정

		र			
Measur	rement				
Meas	suring Range	Standard (Default)	>		
Reba	ar Diameter First Layer, Ø1 (Scan-X)	10 mm	>		
Rebar Diameter Second Layer, Ø2 (Scan-Y) 24 mr		24 mm	>		
Corrections					
Artif	icial Intelligence / Neighboring Rebar Corre	ction	\checkmark		
R	ebar Spacing First Layer, a1 (Scan-X)	5 cm	>		
	Start Auto Rebar Spacing First Layer				
R	ebar Spacing Second Layer, a2 (Scan-Y)	5 cm	>		
	Start Auto Rebar Spacing Secon	d Layer			
Cover Calibration					
Cover Offset					

SETTINGS DEFINITION

- 표준 측정 범위 선택
- "Artificial Intelligence / Neighboring Rebar Correction" 활성화
- 스케치에 지정된 대로 두 레이어의 지름과 간격을 입력하십시오.
- · 간격을 수동으로 입력하는 대신 " Auto Rebar Spacing " 버튼을 사용하여 사전 측정을 지원하는 싱글-라인 스캔을 활성화 할 수 있습니다, 다음 슬라이드를 참조하십시오.

proceq

인공 지능 (AI) 기능 자동 보강 철근 간격 지정

Slide 31 © 2016 Proceq

커버 교정 (CAL) 기능 설정 및 Workflow

- 커버 교정은 인공 지능의 대체 보정 기능으로 Profometer 6 AI에서 사용할 수 있는 추가 기능이며, AI 경계 조건이 충족되지 않을 때 유용합니다.
- 눈으로 보이거나 오픈된 지점에서 직접적인 커버 측정이 가능한 경우 어떠한 제한 사항 (보강 철근 기하학적 형상 또는 측정 범위) 없이 사용할 수 있습니다.
- 해당 지점에서 커버를 측정하고 "Measured Cover"로 값을 입력합니다. 해당 커버 측정의 설정 직경은 "Rebar Diameter Setting "에서 지정해야 합니다. 캘리퍼로 측정된 실제 커버값은 " Reference Cover "로 입력되어야 합니다.
- 다음의 커버 측정은 동일한 기하학적 환경을 가진 어떠한 보강 철근에 대해서도 최대 정확도를 제공합니다.

←	COVER METER	0		
Corrections				
Artificial Intelligence / Neighboring Rebar Correction				
Cover Calibration				
Measured	Cover	68 mm 📏		
Rebar Dia	meter Setting	14 mm 📏		
Reference	e Cover	75 mm 💙		
Cover Offset				

요약

Artificial Intelligence Correction (인공 지능 보정)이 설정된 경우 아래와 같은 조건에서 모든 측정 모드에 적용됩니다.:

- 스탠다드 범위가 선택됨.
- 첫 번째 레이어 직경<= 두 번째 레이어 직경

이러한 조건이 충족되지 않으면, 장비는 첫 번째 레이어 효과 만 고려하여 Neighboring Rebar Correction (인접 보강 철근 수정)을 적용합니다.

적용된 현재 보정 기능들(None, AI, NRC, CAL)과 관련된 설정은 항상 모든 측정 모드의 오른쪽 상단 모서리에 표시됩니다 (전체 목록을 보려면 탭 하십시오).

개요

부분적으로 접근 가능한 60x84cm 기둥의 표면; 외부 전기 케이블로 인해 더 이상 접근 할 수 없는 긴 쪽의 중심; B면에서 X 스캔을 수행할 때 필요한 스킵 기능.

크로스-라인 뷰 커버

크로스-라인 뷰

Cover는 A면에 의심의 여지가 없지만 X 및 Y 스캔 모두 B면에 약간의 비정상적으로 깊은 부분이 나타납니다. 추가 데이터 평가가 권장됩니다.

추가 평가가 필요합니다.

크로스-라인 뷰 신호 강도

크로스**-**라인 뷰

신호 강도는 20cm 마다 수평 등자(Stirrup)가 있으며 세 개의 수직 보강 철근 아래로 A면과 4개 아래로 B면을 나타냅니다. 이 경우 추가 요소에 대한 시각적 표시는 없습니다.

DCEL

Name

P01 2 Side E

 $0 \, \text{mm}$

5 mm

View: Single-Line

Date & Time

Scan: Y Line: 1

Mode

Cover Curve: On

07/10/2014 12:41 PM Cross-Line

Rebars

Lines

싱글**-**라인 뷰 **01**

The Single-Line Views

커버와 신호는 B면의 크로스-라인 뷰에서 나타나는 명백한 등자(Stirrup)와 보강 철근을 확인하고, 표면 아래에 있는 작은 금속 요소와 같은(일반적으로 전기 와이어, 앵커리즈 등) 부분적 효과 또는 스캔 카트의 잘못된 움직임/속도 변화, 심지어는 B면의 전기 케이블에 근접함 때문에 발생하는 신호 강도의 작은 차이에 의해 야기됩니다.

Snapshots

Unit

Metric

Device Info

Distance

5.447 m

Name

P01_2 Side

20 mm

40 mm

View: Single-Line

Date & Time

Scan: X Line: 4

07/10/2014 12:41 PM

Mode

Cover Curve: Or

Cross-Line

Rebars

Lines

싱글**-**라인 뷰 **02**

커버와 신호는 B면의 크로스-라인 뷰에서 나타나는 명백한 등자(Stirrup)와 보강 철근을 확인하고, 표면 아래에 있는 작은 금속 요소와 같은(일반적으로 전기 와이어, 앵커리즈 등) 부분적 효과 또는 스캔 카트의 잘못된 움직임/속도 변화, 심지어는 B면의 전기 케이블에 근접함 때문에 발생하는 신호 강도의 작은 차이에 의해 야기됩니다.

Distance

5.447 m

Snapshots

Unit

Metric

Device Info

개요

36, 40, 44mm / 1.42, 1.57, 1.73 인치의 커버에 각각 다른 지름의 (φ 20 mm, φ 16 mm, φ 12 mm / #4, #5, #6) 부분적으로 겹치는 3쌍의 보강 철근.

멀티-라인 뷰 커버

각 쌍의 보강 철근에 대해 멀티-라인 뷰 커버는 이미지의 아래 부분 (하부 커버)과 윗부분 (상부 커버)을 구별합니다.; 최소 및 최대 커버 값은 컬러 스케일을 수정하기 위해 설정 및 조정할 수 있습니다. Align Rebar Positions Setting 을 활성화하거나 비활성화 한 상태에서 각각 다른 격자가 표시됩니다.

Align Rebar Positions ON

Align Rebar Positions OFF

지름을 측정하는 것은 중첩 영역을 구별하는 또 다른 방법입니다. 이 경우 각 정렬에 대해 두 개의 직경 측정이 단일 보강 철근 및 겹치는 영역에서 각각 수행되었습니다. 멀티-라인과 스냅샷 뷰에서, 중첩 영역에서 큰 직경과 낮은 커버가 어떻게 측정되는지는 분명합니다.

Unit Name Date & Time Mode Rebars Lines Distance Snapshots Overlapp, Rebars 08/03/2014 5:49 PM Multi-Line 5.519 m Metric View: Multi-Line **Display Measurement: Diameter** Device Info 10 cm-15 cm-Diameter (mm) 20 cm 6-9 10-13 _ 25 cm-14-17 30 cm-18-21 35 cm 22-25 26-29 40 cm 30-33 _ >=34 0.4 m 0.5 m 0.6 m na 0.0 m

Multi-Line View Cover

Statistics View

Slide 42 © 2016 Proceq

멀티**-**라인 뷰 신호 강도 **01**

멀티-라인 신호 강도 뷰에서 O- 슬라이더 (Offset)를 아래로 끌 때 관찰 된 다른 신호 강도들은 두 개의 보강 철근을 단일 철근으로부터 명확하게 구분합니다. : 그러한 차이점이 어떻게 강조되어 있는지 네 가지 다른 단계로 보십시오. 실제 O 슬라이더 위치에 관계없이 왼쪽 (더 크고 얕음)의 보강 철근이 어떻게 더 강한 강도를 발생시키는지 알 수 있습니다.; 동시에 스펙트럼의 상단 절반 (단일 보강 철근)은 항상 하단 부분보다 낮은 강도를 나타냅니다.

Name

Date & Time

Mode

Rebars

Lines

Distance

Snapshots

Unit

멀티-라인 뷰 신호 강도 **02**

멀티-라인 신호 강도 뷰에서, O 슬라이더 (Offset)를 아래로 드래그 할 때 관찰된 여러 신호 강도가 단일 보강 철근으로부터 이중 보강 철근을 명확히 구분합니다.: 그러한 차이점이 어떻게 강조되어 있는지 네 가지 다른 단계로 보십시오. 실제 0 슬라이더 위치에 관계없이 왼쪽 (더 크고 얕음)의 보강 철근이 어떻게 더 강한 강도를 발생시키는지 알 수 있습니다.; 동시에 스펙트럼의 상단 절반 (단일 보강 철근)은 항상 하단 부분보다 낮은 강도를 나타냅니다.

내용 - 부식 분석

- 1. 콘크리트내의 철근 부식
 - 부식 메커니즘
- 2. 부식 전위 측정
 - 측정 원리
 - 측정 절차
- 3. 부식 가능성 데이터 해석
 - ASTM 적용값
 - 통계적 평가
- 4. 실제 사례
 - 주차 구역

부식 메커니즘

- 정상 조건에서, 보강 스틸은 얇은 철 산화물 패시브 필름에 의해 부식으로부터 보호됩니다.
- 패시브 필름은 콘크리트와 대기 이산화탄소 (CO2)의 반응 또는 스틸에 대한 공격적인 물질, 특히 제설제 또는 해수의 염화물 침투로 분해됩니다.
- 양극에서 철 이온 (Fe ++)이 용해되고 전자가 유리됩니다. 이 전자는 강철을 통해 음극으로 이동하여 일반적으로 사용할 수 있는 물과 산소로 수산화물 (OH-)을 형성합니다.
- 이 원리는 하프 셀 방법으로 측정 할 수 있는 전위차를 생성합니다.

부식 진행

- 철근 콘크리트는 궁극적으로 구조물의 전체적인 고장을 초래하는 부식 과정을 불가피하게 겪게 됩니다.
- 첫 번째 단계에서는 염화물이나 이산화탄소와 같은 공격적인 요소가 구조물 안으로 침투합니다.
- 보강 철근에 다다르면, 이러한 공격적인 고농도 성분이 보강 철근을 부식으로부터 보호하는 철 산화물 패시브 레이어를 공격합니다.
- 습기와 산소가 존재하면 녹이 형성되어 결국 구조적 결함을 일으킵니다.

측정 원리

현장 준비

Setting the bar connection

watering the test points

Photo source www.concrete-concepts.eu

전극의 선택

봉 전극 측정

1.	파일 이름
2.	연결된 프로브, 시간, 배터리
3.	선택한 설정 표시
4.	컬러 팔레트
5.	설정
6.	측정 Start / Stop
7.	파일 저장
8.	모든 데이터 삭제
9.	셀 값 삭제
10.	다음 라인
11.	거친 격자 On / Off
12.	텍스트 노트 추가
13.	프로브 수평 위치
14.	실제 전위값
15.	실제값 저장
16.	방향 버튼

차륜 전극 측정

1.	파일 이름
2.	연결된 프로브, 시간, 배터리
3.	선택한 설정 표시
4.	컬러 팔레트
5.	설정
6.	측정 Start / Stop
7.	파일 저장
8.	모든 데이터 삭제
9.	현재 라인 삭제
10.	다음 라인 또는 180° 프로브 회전
11.	방향 버튼
12.	텍스트 노트 추가
13.	프로브 수평 위치
14.	실제 전위 값(들)
15.	거리 건너 뛰기 (설정하려면 누르십시오)
16.	스킵 버튼
17.	속도 바

ASTM C876-09 적용값

- 첫 번째 유용한 지침은 ASTM 표준 C 876-09에 의해 제공되며 능동 / 수동 상태에 대한 지표를 제시합니다.
- 이 값들은 활성 (적색), 수동 (녹색) 및 불확실 영역 (노란색)을 강조 표시 한 Profometer Corrosion Simulated Chipping Graph View에서 구현됩니다.

데이터 해석 - 일반적인 경우

그러나 일반적으로 실제 테스트에서 경험한 바와 같이 측정된 값의 큰 변동이 예상되며, RILEM TC 154-EMC에서 명시적으로 언급됩니다.

- O₂ 가없는 수(水)포화 콘크리트 : -1000 to -900 mV
- 습기가 많은 염화물 오염 콘크리트 : -600 to -400 mV
- 습기, 염소가 없는 콘크리트 : -200 to +100 mV
- 습기가 있는 탄산 콘크리트 : -400 to +100 mV
- 건조 탄산 콘크리트 : 0 to +200 mV
- 건조, 비 탄산 콘크리트: 0 to +200 mV

Ref: RILEM TC 154-EMC

부식 임계 값은 통계적 평가를 통해 케이스 별로 평가 되어야합니다.

분포 View

가로축에는 전위 값이 표시됩니다.; 수직 바는 측정되고 저장된 각각의 전위값의 백분율을 나타냅니다.

검사 중인 표면이 패시브 보강 철근 뿐만 아니라 활발히 부식되는 경우, 두 가지 상황은 부분적으로 중복되는 두 개의 분포를 보였으며 부식 영역은 보다 부정적인 전위를 중심으로 나타냈다.

누적 분포 View

가로축에는 전위 값이 표시됩니다.; 세로축은 해당 전위 값보다 낮은 측정 값의 %가 표시됩니다.

검사 중인 표면이 패시브 보강 철근 뿐만 아니라 활발히 부식되는 경우, 커브는 일반적으로 더 낮은 경사도 (더 평평한)가 있는 중앙 영역을 나타냅니다. 기울기가 변경되는 두 지점은 두 개의 수직 커서를 끌어서 화면에 표시 할 수 있습니다. 빨간색 커서는 활성 분포가 예상되는 최대 (가장 양성의) 전위 값을 정의합니다. 녹색 커서는 수동 분포의 최소 (가장 음성의) 전위을 정의합니다. 활성 부식은 곧장 왼쪽 (더 음성인) 직선 부분의 영역에서 예상된다.

Chipping Graph View

커서 라인이 누적 분포 뷰에 설정되면, 해당 전위 범위의 표면이 Chipping Graph View의 해당 색상으로 자동 표시됩니다.

NOTE! 예상되는 부식 전위 임계 값을 확인 / 개선하기 위해 열려있는 위치에 대해 직접 육안 검사를 항상 수행하는 것이 좋습니다.

- 바닥 슬랩 (-1 층) 및 커버 슬랩 (-2 층)의 악화 (갈라짐 및 파쇄)의 징후가 있는 지하 차고
- 제설제에 의한 염화물 오염으로 예상되는 부식
- 바닥 슬랩의 규정된 완전 부식 전위 매핑 및 커버 슬랩의 대표 스팟 체크

전체 표면은 세 영역으로 나누어졌습니다.

- 1. 주요 구역
- 2. 입구
- 3. 코너

TECHNIK UND FORSCHUNG IM BETONBAU

Courtesy of TFB AG

Profometer Link에서 회전 및 병합된 파일

Global overview

Estimated thresholds

Chipping graph

- 1. 부식이 진행되기 쉬운 지역 → 직접 확인
- 2. 패시브 상태에 있을 가능성이 매우 높은 영역 → 직접 확인
- 3. 국지적 부식 가능성 높은 지역 → 측정된 전위의 영역 추세를 확인함

